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Theory and Measurement of Q in Resonant
Ring Circuits®

HELLMUT GOLDEf{

Summary——The loaded and unloaded Q of a resonant ring cir-
cuit are derived on the basis of the fundamental definition. Simple
experiments are described to measure Qp Qi, and the ring power
gain without additional coupling to the ring. A number of graphs are
given which are useful for these measurements.

INTRODUCTION

HE traveling-wave resonator or resonant ring
Tcircuit has been described by wvarious authors

[1-6]. Bothdirectional and nondirectional coupling
have been treated, as well as the effect of a lossless dis-
continuity in the resonant ring. Some applications for
the resonant ring circuit have been given which show
the general interest in the device [1], [2], [7], [8]. One
important characteristic of the circuit is that the power
level in the resonant ring may be higher than in the
primary transmission line.

A few of the papers go briefly into a discussion of the
Q of the circuit [3], [5]. These calculations are of an
approximate nature, valid under the assumption of very
low loss in the resonant ring. It is the purpose of this
paper to derive more accurate relations for the un-
loaded and loaded Q of the circuit. The paper will fur-
ther describe simple measurements for Qg, Qz, and the
ring power gain without additional coupling to the ring.
This may be important in cases where the ring circuit
wave cannot be readily monitored for reasons of size,
or operation in a vacuum where a second coupling ele-
ment should be avoided. The power loss in the ring
circuit can also be determined by this measurement,
since the power gain depends on the total losses in the
ring. This information may be valuable, if the resonant
ring is used to test certain components under high
power levels and where the power loss in the com-
ponent depends on the power level.

Only the case of directional coupling will be treated
in this paper. The ideas relating to the determination of
Q, the ring power gain, and the ring power loss can
easily be applied to nondirectional coupling.

Basic EQuaTioNs

Two basic configurations of the ring circuit are possi-
ble as originally described by MiloSevic and Vautey
[2]. They are shown schematically in Figs. 1 and 2 and
will be referred to as types I and II, respectively. The
coupling element between the primary line and the
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Fig. 1—Resonant ring circuit, type 1.
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Fig. 2—Resonant ring circuit, type II.

ring circuit is a symmetrical dual directional coupler;
other coupling elements like a magic tee or a circulator
are equally possible.

No reflections are assumed to exist anywhere, the
external load is matched to the transmission line, and
the directional coupler has infinite directivity. To
simplify the calculations, it will be further assumed that
the coupling region between the reference planes is
lossless and of infinitesimal length; any loss or phase
shift resulting from the finite length of the directional
coupler will be absorbed into the connecting transmis-
sion lines.

The relations between the incident and reflected
waves at the reference planes of the coupler are unique-
ly determined by the matrix equation

b=S-a, ¢))

where a is the matrix of the incident waves @y « + « a4,
b the matrix of the reflected waves b; - - - by, and S the
scattering matrix of the directional coupler. For a
symmetrical, lossless directional coupler, the scattering
matrix is given by
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0 ki jky O
Bh 0 O jk

S=1" s )
0 jky ki O

where &y and &, are real due to the assumed infinitesimal
length of the coupling region [9].
Conservation of energy demands that

k12 + k22 = 1 (3)

It is common practice to express the amount of
coupling between the primary and secondary branch of
a directional coupler in db. From (1) and (2) and Figs.
1 and 2, it follows that

db (Type I circuit)
db (Type II circuit).

(4a)
(4b)

Coupling = 20 log k&,
Coupling = 20 log &;

The two resonant ring circuits are sufficiently similar
to be treated by the same equations. From the previous

assumption, that no reflections occur anywhere, it
follows for both circuits that

@y = a3 ="by = bs=0. (5)
The relation between the wave amplitudes a4 and b; is
given by
ar = by}, (6)
where

v =a+j8 (7

is the propagation constant in the ring circuit of length
I between the reference planes 3 and 4. It is convenient
to define a loss factor 4 by

4 = el (8)

Egs. (1), (2), and (6) can be solved for the power gain
G between reference planes 3 and 1.

2 1__k12

bi|* 11—k
1= Bde 2

ay

G = 9)

The power gain is a maximum if the phase shift around
the ring is equal to 27#, where # is an integer; this res-
onant power gain is given by

1 — &

alrewrrl (10

r

It is possible to optimize the power gain for a given
value of 4 by a suitable choice of k.

1

1— A2 (1)

Gr,opb =

with

kl,opt = 4. (12)
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Eq. (10) has been plotted by various authors [1-3].
For graphs of the power gain as a function of other
parameters, which will be discussed in the following
sections, see Figs. 7 and 8.

THE UNLOADED

In general, the unloaded Q of a resonant cavity is
defined by

w {energy stored in cavity)
QO = N " == (13)
power loss in cavity Py

evaluated at resonance. The power balance for the ring
circuit at resonance is given by

P = Ia1|2—‘ |bz|2, (14)

where |a,|? is the power delivered by the generator and
‘bz‘ 2 is the power dissipated in the external load. The
power flow around the ring can be expressed in terms
of the power level at reference plane 3 as

P(x) = | bs|2e2e, (15)
The total stored energy in the loop is given by
4 ] balze—zax | bs\z
w =f ————dx = —— (1 — 4%, (16)
3 2, 2av,
where v, is the group velocity in the ring. Then
) b3 1?°(1 — 4%
0 = [&] (1

2av, | ar|? — | ba]?

Introducing relations between the wave amplitudes,
(17) can be simplified to

® THAG?

Q==

206'1)9 Oél)\u2

(18)

where n is the numbezr of wavelengths in the ring, \¢
and A, are the free space wavelength and the guided
wavelength in the ring, respectively. Tischer derived
this expression as an approximation for small values of
a [3], [5]. However, (18) has been derived from the
basic definition of Q, without any approximations; it
is therefore valid for any value of a.

Tue LoADED Q
The loaded Q of a resonant circuit is defined by

w (energy stored in cavity)

Qr =

power loss in cavity and external circuit
oW
)
PL + Pext

(19)

evaluated at resonance.

Before we evaluate this expression for a resonant
ring circuit, it is convenient to consider first the usual
single-input resonant circuit, as shown schematically in
Fig. 3. Here, the cavity is coupled to the input trans-
mission line by a coupling network. It can easily be
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shown that the ratio Q./Q¢ can be obtained by meas-
uring the voltage standing wave ratio (VSWR) on the
line at resonance [10].

_ o
147

Or (20)

where 7 is the VSWR for an overcoupled cavity and the
reciprocal of the VSWR for an undercoupled cavity.
If we introduce the reflection coefficient p,

4 |- VSWR — 1 (1)
P VsSWR 417
(20) reduces to

QL=92—°<1i\pl>, (22)

where the positive sign is for an undercoupled cavity,
the negative sign for an overcoupled cavity. For critical
coupling, p=0, and Qr=Q./2.

Referring again to Figs. 1 and 2, it is obvious that
the VSWR on the input transmission line is always
unity under the idealizing assumptions made in this
derivation. The power not coupled into a conven-
tional resonant cavity is reflected toward the gener-
ator; the power not coupled into a resonant ring is
absorbed in the external load. In order to apply the
ideas above to the resonant ring, we must replace the

(~)

Fig. 3—Schematic diagram of conventional single-input
resonant cavity.
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Fig. 4—Q1/Qs vs ring attenuation with the coupling
coefficient k; as parameter.
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reflection coefficient p by the wave ratio bs/e:, the ratio
of the uncoupled wave to the incident wave.

QL = %(1 * >, (23)

where again the positive sign refers to an undercoupled
cavity, the negative sign to an overcoupled cavity. From
the definition of k; and k. it follows that overcoupling
is characterized by k1< 4, undercoupling by 21> A4. In
either case, if the wave ratio bs/a; is evaluated at res-
onance from (2) and (3) and substituted into (23), the
loaded Q is given by

01+ k(1 — 4)
T2 — k)

b2

ay

(29

L

If the coupling between the primary line and the
resonant ring is reduced to zero, z.e., ki=1, Qr=Qo.
For optimum or critical coupling, ky=4, and Q= Qo/2.
Eq. (24) has been plotted in Fig. 4 as a function of the
ring attenuation in db.

An approximate expression for the loaded Q can be
derived from (9) for the power gain, since for reason-
ably large values of Q (19) reduces to

w

Or = 2Aw

; (25)

where w is the resonant frequency, and w+Aw are the

half-power frequencies. Thus,
|1 — Bide81]2 = 2(1 — k1 4)? (26)

assuming that the loss in the ring is constant for small
frequency changes. Using the relation

Aw

a8
A~ — Aw =

Ow Uy

) (27)

which is a good approximation for small values of
Aw, (26) reduces to

Awl (1 — k4)?
cos—=1————"

28
2, 2%, 4 (28)

Since (25) is valid only for reasonably large Qp, the
cosine can be approximated by the first two terms of
the power series expansion. Then (25) can be written

V'E1 4 log, (1/4)

Qr=0C— "7

(29)

Eq. (29) is an approximation for large values of Qy.
It can be compared with (24), which is an exact ex-
pression for Q. The two expressions agree within a few
per cent if the loss in the ring circuit does not exceed
6 db, and &, is larger than %. The latter condition implies
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that the directional coupler should couple less than 3 db
of power from the primary to the secondary branch, if a
type I circuit is used, and more than 3 db if a circuit of
type Il is used. Since directional couplers with more
than 3 db coupling are scarcely available, it follows that
(29) is not applicable for practical type II circuits. This
is not too serious a limitation, since for low losses (less
than 6 db) a circuit of type I gives a higher power gain
than a circuit of type II with the same directional
coupler.

MEASUREMENT PROCEDURES

Eq. (23) suggests a simple measurement of the ratio
Qr/Q. One possible arrangement is shown in Fig. 5.
The two power levels |b3|2 and |ai|% are measured
independently at the resonant frequency w by means of
two bolometer bridges. If the two auxiliary directional
couplers are equal, the two bolometer bridges can be re-
placed by a reflectometer, which measures the ratio
‘bg/all « directly, or by a slotted line. The latter
method is shown schematically in Fig. 6. The ratio
|6s/a1] o can be calculated from the measured VSWR
using (21), if |p| is replaced by b2/a1f « The resonance
in the system is easily determined by noting that the
ratio bs/a; 1s a minimum at resonance.

An independent measurement of the loaded Q is
possible if the frequency dependence of the wave b. is
used. From (1) and (2),

@ 1 — EdeB

b kl _— Ae‘jﬁl
= (30)

At the half-power frequencies, w +Aw, this wave ratio is
given by

Awl 712
bl b2+ A? — 2k 4 cos—
9
~ = —1. @
a1 |wtiAw Awl
- 14+ £242% — 2814 cos—
7, -

Introducing (27), the ratio bs/ai at the half-power
points can be expressed by the same ratio measured at

resonance.
2

-+ 1) .
(2]

Thus, a measurement of the frequency deviation Aw
which satisfies (32) yields a second independent meas-
urement of Q. It should be noted that (32) is valid
under the same restrictions as (29).

These two measurements determine both the loaded
and the unloaded Q. It is then possible to eliminate both
Ey and A from the expressions for the power gain and

be

a

'bz

2 1<
wiAw_ 2

| a1

(32)
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express the power gain in terms of the two Q values.

(33)
— 27 no.
1 — €xXp ﬁé—z—*
0 ’g

The exponential term generally cannot be neglected.
Eq. (33) has been plotted in Fig. 7. This method for
measuring the ring power gain is accurate only for
reasonably large values of Q. Since it is an indirect
method, it should be used only in cases where a direct
measurement of the ring power gain is not desirable or
possible.
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Fig. 5—Schematic diagram for the measurement of
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Fig. 8—Resonant ring power gain vs power ratio |bz/ai|,? (Upper
branches are for an undercoupled circuit, lower branches for an
overcoupled circuit.)

A variation of this method assumes a knowledge of
the coupling coefficient &1. It is then sufficient to meas-
ure | bs/a1]w, the wave ratio at resonance. Eliminating
the loss factor 4 in (10), the power gain can be written
in terms of this wave ratio as

_ (1 - kll bz/al1w)2

G, 34a
= (34a)
for an overcoupled circuit, or as
14+ k| o)’
P JRLAD (34b)

1 — &2

for an undercoupled circuit.

The power gain is shown graphically in Fig. 8 as a
function of the power ratio lbz/allf, with %; as a pa-
rameter. The upper branch of each curve is for an un-
dercoupled circuit, the lower branch for an overcoupled
circuit. This measurement is accurate for all values of
the coupling coefficient kj, since the two equations do
not contain any approximations. Since the coupling
coefficient can usually be determined accurately, while
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the ring attenuation cannot, this measurement is very
often sufficient to determine the power gain.

Note that these methods can be used to determine
the ring attenuation. It can easily be shown that

Ikl_ Ib2/allw’
1 — k1l bo/ass

This expression is shown graphically in Fig. 9.

A = el = g~ Fp/Quyy) =

(35)
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