
560 IRE TRANSACTIONS ON MICROWAVE THEORY

Theory and Measurement of

Ring Circuits*

HELLMUT GOLDE~

Summary—The loaded and unloaded Q of a resonant ring cir-

cuit are derived on the basis of the fundamental definition. Simple

experiments are described to measure Qo, Q~, and the ring power

gain without additional coupling to the ring. A number of graphs are

given which are useful for these measurements.

INTRODUCTION

T

HE traveling-wave resonator or resonant ring

circuit has been described by various authors

[1-6]. Both directional andnondirectional coupling

have been treated, as well as the effect of a lossless dis-

continuity in the resonant ring. Some applications for

the resonant ring circuit have been given which show

the general interest in the device [1], [2], [7], [8]. One

important characteristic of the circuit is that the power

level in the resonant ring may be higher than in the

primary transmission line.

A few of the papers go briefly into a discussion of the

Q of’ the circuit [3], [5]. These calculations are of an

approximate nature, valid under the assumption of very

low loss in the resonant ring. It is the purpose of this

paper to derive more accurate relations for the un-

loaded and loaded Q of the circuit. The paper will fur-

ther describe simple measurements for QO, QL, and the

ring power gain without additional coupling to the ring.

This may be important in cases where the ring circuit

wave cannot be readily monitored for reasons of size,

or operation in a vacuum where a second coupling ele-

ment should be avoided. The power loss in the ring

circuit can also be determined by this measurement,

since the power gain depends on the total losses in the

ring. This information may be valuable, if the resonant

ring is used to test certain components under high

power levels and where the power loss in the com-

ponent depends on the power level.

Only the case of directional coupling will be treated

in this paper. The ideas relating to the determination of

Q, the ring power gain, and the ring power loss can

easily be applied to nondirectional coupling.

BASIC EQUATIONS

Two basic configurations of the ring circuit are possi-

ble as originally described by Milo5evic and Vautey

[2]. They are shown schematically in Figs. 1 and 2 and

will be referred to as types 1 and II, respectively. The

coupling element between the primary line and the
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ring circuit is a symmetrical dual directional coupler;

other coupling elements like a magic tee or a circulator

are equally possible.

No reflections are assumed to exist anywhere, the

external load is matched to the transmission line, and

the directional coupler has infinite directivity. To

simplify the calculations, it will be further assumed that

the coupling region between the reference planes is

lossless and of infinitesimal length; any loss or phase

shift resulting from the finite length of the directional

coupler will be absorbed into the connecting transmis-

sion lines.

The relations between the incident and reflected

waves at the reference planes of the coupler are unique-

ly determined by the matrix equation

b= S.a, (1)

where a is the matrix of the incident waves al o , 0 al,

b the matrix of the reflected waves bl . . . bk, and S the

scattering matrix of the directional coupler. For a

symmetrical, lossless directional coupler, the scattering

matrix is given by
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s=

o kl jkz O Eq. (10) has been plotted by various authors [1-3].

kl O 0 jk, For graphs of the power gain as a fuuction of other

(2) parameters, which will be discussed in the following
ikz O 0 kl ‘

sections, see Figs. 7 and 8.

where kl and kz are real due to the assumed infinitesimal

length of the coupling region [9].

Conservation of energy demands that

k,z + k,’ = 1. (3)

It is common practice to express the amount of

coupling between the primary and secondary branch of

a directional coupler in db. From (1) and (2) and Figs.

1 and 2, it follows that

Coupling = 20 log k’ db (Type I circuit) (4a)

Coupling = 20 log kl db (Type II circuit). (4b)

The two resonant ring circuits are sufficiently similar

to be treated by the same equations. From the previous

assumption, that no reflections occur anywhere, it

follows for both circuits that

az=a3=bl=b4 =0. (5)

THE UNLOADED Q

In general, the unloaded Q of a resclnant cavity is

defined by

Q. =
w (energy stored in cavity) cow-.__ —— , (13)

power loss in cavity PL

evaluated at resonance. The power balance for the ring

circuit at resonance is given by

P.L= lull’– lb~l’, (14)

where I al 12 is the power delivered by the generator and

I bzl 2 is the power dissipated in the external load. The

power flow around the ring can be expressed in terms

of the power level at reference plane 3 as

P(x) = [ bg \ ‘e–’mx. (15)

The total stored energy in the loop is given by

J3 t~q 2awg

The relation between the wave amplitudes al and b~ is

given by where v~ is the group velocity in the ring.

ah = b~e–~l, (6) a Ib,l’(1 - A’)
Qo. —

2avqla~12– lb,l’ “
where

y=a+.ifi (7)

is the propagation constant in the ring circuit of length

1 between the reference planes 3 and 4. It is convenient

to define a loss factor .4 by

~ = ~–a’t. (8)

Eqs. (1), (2), and (6) can be solved for the power gain

G between reference planes 3 and 1.

G= ~ 2 l–k,2—
al I 1 –kl.4e-@’1’ ‘

(9)

The pc)wer gain is a maximum if the phase shift around

the ring’ is equal to 2mz, where n is an integer; this res-

onant power gain is given by

1 – kl’
G, =

(1 – kl.l)’ -
(lo)

It is possible to optimize the power gain for a given

value of .4 by a suitable choice of kl.

(11)

with

kl,opt = .4. (12)

Then

(17)

Introducing relations between the wave amplitudes,

(17) can be simplified to

(18)

where n is the numb~r of wavelengths in the rin:g, AO

and & are the free space wavelength and the guided

wavelength in the ring, respectively. Tischer delived

this expression as an approximation for small values of

a [3], [5]. However, (18) has been derived from the

basic definition of QO without any approximations; it

is therefore valid for any value of a.

THE LO,\DED Q

The loaded Q of a resonant circuit is defined by

QL. –
u (energy stored in cavity)

——

power loss in cavity and external circuit

6JJ’V
——

PL + Pzti ‘
(19)

evaluated at resonance.

Before we evaluate this expression for a rmo nant

ring circuit, it is convenient to consider first the usual

single-input resonant circuit, as shown schematically in

Fig. 3. Here, the cavity is coupled to the input trans-

mission line by a coupling network. It can easily be
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shown that the ratio QL/Qo can be obtained @ meas-

uring the voltage standing wave ratio (VSWR) on the

line at resonance [10].

(20)

where Y is the VSWR for an overcoupled cavity and the

reciprocal of the VSWR for an undercoupled cavity.

If we introduce the reflection coefficient p,

IPI=
VSWR – 1

VSWR + 1’
(21)

(20) reduces to

QL=~(l*]Pl), (22)

where the positive sign is for an undercoupled cavity,

the negative sign for an overcoupled cavity. For critical

coupling, P=O, and QL= Qo/2.

Referring again to Figs. 1 and 2, it is obvious that

the VSl$7R on the input transmission line is always

unity under the idealizing assumptions made in this

derivation. The power not coupled into a conven-

tional resonant cavity is reflected toward the gener-

ator; the power not coupled into a resonant ring is

absorbed in the external load. In order to apply the

ideas above to the resonant ring, we must replace the

Fig. 3—Schematic diagram of conventional single-input
resonant cavity.
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reflection coefficient p by the wave ratio b2/al, the ratio

of the uncoupled wave to the incident wave.

QL=W3 (23)

where again the positive sign refers to an undercoupled

cavity, the negative sign to an overcoupled cavity. From

the definition of kl and kz it follows that overcoupling

is characterized by kl <.4, undercoupling by kl >.4. In

either case, if the wave ratio bZ/al is evaluated at res-

onance from (2) and (3) and substituted into (23), the

loaded Q is given by

QL = Qo(l + k.,)(1 – .4)

2(1 – k,A) “
(24)

If the coupling between the primary line and the

resonant ring is reduced to zero, i.e., kl = 1, QL = Qo.

For optimum or critical coupling, k,= A, and QL = Qo/2.

Eq. (24) has been plotted in Fig. 4 as a function of the

ring attenuation in db.

An approximate expression for the loaded Q can be

derived from (9) for the power gain, since for reason-

ably large values of Q (19) reduces to

QL. ~, (25)
2Au

where u is the resonant frequency, and w f AU are the

half-power frequencies. Thus,

I 1- ~,.4e-jAfi’12 = 2(1 - k,,4)’, (26)

assuming that the loss in the ring is constant for small

frequency changes. Using the relation

(27)

which is a good approximation for small values of

A~, (26) reduces to

Ad (1 – kl.4)2 .
~~s—=l— (28)

Elg 2kl A

Since (25) is valid only for reasonably large QL, the

cosine can be approximated by the first two terms of

the power series expansion. Then (25) can be written

<k,A loge (l/A)
QL = Qo

1 – k,.4
(29)

Eq. (29) is an approximation for large vaIues of Q~.

It can be compared with (24), which is an exact ex-

pression for QL. The two expressions agree within a few

per cent if the loss in the ring circuit does not exceed

6 db, and kl is larger than ~. The latter condition implies
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that the directional coupler should couple less than 3 db

of power from the primary to the secondary branch, if a

type I circuit is used, and more than 3 db if a circuit of

type I [ is used. Since directional couplers with more

than 3 db coupling are scarcely available, it follows that

(29) is not applicable for practical type II circuits. This

is not too serious a limitation, since for low losses (less

than 6 db) a circuit of type I gives a higher power gain

than a circuit of type 11 with the same directional

coupler.

MEASUREMENT PROCEDURES

Eq. (23) suggests a simple measurement of the ratio

QI,/QO. One possible arrangement is shown in Fig. 5.

The two power levels I bzl ~ and I al I ~ are measured

independently at the resonant frequency a by means of

two bolometer bridges. If the two auxiliary directional

couplers are equal, the two bolometer bridges can be re-

placed by a reflectometer, which measures the ratio

I bZ/al] . directly, or by a slotted line. The latter

methocl is shown schematically in Fig. 6, The ratio

I bz/all o can be calculated from the measured VSWR

using (21), if I p I is replaced by I bz/all o. The resonance

in the system is easily determined by noting that the

ratio bz/al is a minimum at resonance.

An independent measurement of

possible if the frequency dependence

used. From (1) and (2),

b, ~L — ~~–ibl

al 1 – klAe-$~~ “

At the half-power frequencies, w + AOJ,

the loaded Q is

of the wave bz is

(30)

this wave ratio is

given by

Introducing (27), the ratio bz/al at the half-power

points can be expressed by the same ratio measured at

resonance.

(32)

Thus, a measurement of the frequency deviation Aw

which satisfies (32) yields a second independent meas-

urement of QL. It should be noted that (32) is valid

under the same restrictions as (29).

These two measurements determine both the loaded

and the unloaded Q. It is then possible to eliminate both

kl and A from the expressions for the power gain and
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express the power gain in terms of the two Q values.

& ~ Q.()
G,= -- ‘“ ‘0 (33)

– 2?r’Plzlm “

()

1 – exp ———
QOZ,

The exponential term generally cannot be neglected.

Eq. (33) has been plotted in Fig. 7. This method. for

measuring the ring power gain is accurate only for

reasonably large values of QL. Since it is an indirect

method, it should be used only in cases where a direct

measurement of the ring power gain is not desirable or

possible.
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Fig. 5—Schematic diagram for the measurement of

QL (type I resonant ring).
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A variation of this method assumes a knowledge of

the coupling coefficient kl. It is then sufficient to measu-

re I bz/al 1.; the wave ratio at resonance. Eliminating

the loss factor A in (10), the power gain can be written

in terms of this wave ratio as

~ = (1 – kl Ib2/mlJ’
7’

1 – klz
(34a)

for an overcoupled circuit, or as

~ = (1 + kll b2/a~lJ2

r (34b)
1 – klz

for an undercoupled circuit.

The power gain is shown graphically in Fig. 8 as a

function of the power ratio I bJal I ~ with kl as a pa-

rameter. The upper branch of each curve is for an un-

dercoupled circuit, the lower branch for an overcoupled

circuit. This measurement is accurate for all values of

the coupling coefficient kl, since the two equations do

not contain any approximations. Since the coupling

coefficient can usually be determined accurately, while
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Fig. 9—Ring attenuation vs wave ratio IWa, 1~with k as parameter.

the ring attenuation cannot, this measurement is very

often sufficient to determine the power gain.

Note that these methods can be used to determine

the ring attenuation. It can easily be shown that

This expression is shown graphically in Fig. 9.
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